Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift.

نویسندگان

  • Sourav Haldar
  • Arunima Chaudhuri
  • Amitabha Chattopadhyay
چکیده

Dynamics of confined water has interesting implications in the organization and function of molecular assemblies such as membranes. A direct consequence of this type of organization is the restriction imposed on the mobility of the constituent structural units. Interestingly, this restriction (confinement) of mobility couples the motion of solvent (water) molecules with the slow moving molecules in the assembly. It is in this context that the red edge excitation shift (REES) represents a sensitive approach to monitor the environment and dynamics around a fluorophore in such organized assemblies. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed REES. REES relies on slow solvent reorientation in the excited state of a fluorophore that can be used to monitor the environment and dynamics around a fluorophore in a host assembly. In this article, we focus on the application of REES to monitor organization and dynamics of membrane probes and proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorophore environments in membrane-bound probes: a red edge excitation shift study.

A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed the Red Edge Excitation Shift (REES). This effect is mostly observed with polar fluorophores in motionally restricted media such as very viscous solutions or condensed phases. In this paper, we report the red e...

متن کامل

Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach.

Wavelength-selective fluorescence comprises a set of approaches based on the red edge effect in fluorescence spectroscopy which can be used to directly monitor the environment and dynamics around a fluorophore in a complex biological system. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of...

متن کامل

Monitoring the organization and dynamics of bovine hippocampal membranes utilizing differentially localized fluorescent membrane probes.

Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using environment-sensitive and differentially localized fluorescent probes NBD-PE and NBD-cholesterol, utili...

متن کامل

Micellar Organization and Dynamics: A Wavelength-Selective Fluorescence Approach

Wavelength-selective fluorescence comprises a set of approaches based on the red edge effect in fluorescence spectroscopy, which can be used to monitor directly the environment and dynamics around a fluorophore in a complex biological system. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge o...

متن کامل

Effect of structural transition of the host assembly on dynamics of a membrane-bound tryptophan analogue.

Tryptophan octyl ester (TOE) represents an important model for membrane-bound tryptophan residues. In this article, we have explored the effect of sphere-to-rod transition of sodium dodecyl sulfate micelles on the dynamics of the membrane-bound tryptophan analogue, TOE, utilizing a combination of fluorescence spectroscopic approaches which include red edge excitation shift (REES). Our results s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 115 19  شماره 

صفحات  -

تاریخ انتشار 2011